Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,4'-[Thiophene-2,5-diylbis(ethyne-2,1diyl)]dibenzonitrile

João Figueira,^a Viatslav Vertlib,^a João Rodrigues,^a Kalle Nättinen^b and Kari Rissanen^c*

^aCentro de Química da Madeira, LQCMM/MMRG, Departamento de Química da Universidade da Madeira, 9000-390 Funchal, Portugal, ^bVTT, Sinitaival 6, PO Box 1300, FI-33101 Tampere, Finland, and CNanoscience Center, Department of Chemistry, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland Correspondence e-mail: Kari.Rissanen@jyu.fi

Received 5 March 2008; accepted 25 March 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.107; data-to-parameter ratio = 12.9.

In the solid state, the title compound, $C_{22}H_{10}N_2S$, forms centrosymmetric dimers by pairs of non-classical C-H···S hydrogen bonds linking approximately coplanar molecules. The benzene ring involved in this interaction makes a dihedral angle of only 7.21 $(16)^{\circ}$ with the thiophene ring, while the other benzene ring is twisted somewhat out of the plane, with a dihedral angle of 39.58 (9)°. The hydrogen-bonded dimers stack on top of each other with an interplanar spacing of 3.44 Å. $C-H \cdots N$ hydrogen bonds link together stacks that run in approximately perpendicular directions. Each molecule thus interacts with 12 adjacent molecules, five of them approaching closer than the sum of the van der Waals radii for the relevant atoms. Optimization of the inter-stack contacts contributes to the non-planarity of the molecule.

Related literature

For related literature, see: Rodríguez et al. (2004, 2006); Lind et al. (2004); Garcia et al. (2001); Ornelas et al. (2005, 2008); Tour (2003).

Experimental

Crystal data

 $C_{22}H_{10}N_2S$ $M_r = 334.38$ Monoclinic, $P2_1/n$ $a = 5.4557 (11) \text{\AA}$ b = 19.467 (4) Å c = 15.592 (3) Å $\beta = 91.89 \ (3)^{\circ}$

V = 1655.1 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.20 \text{ mm}^{-1}$ T = 173 (2) K $0.3 \times 0.2 \times 0.2$ mm

Data collection

Nonius KappaCCD diffractometer	2906 independent reflections
Absorption correction: none	1762 reflections with $I > 2\sigma(I)$
19547 measured reflections	$R_{\rm int} = 0.102$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	226 parameters
$wR(F^2) = 0.107$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
2906 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å.	°)

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C15−H15···N1 ⁱ	0.95	2.65	3.246 (4)	121
$C7 - H7 \cdot \cdot \cdot N25^{ii}$	0.95	2.65	3.384 (4)	134
C20−H20···N25 ⁱⁱⁱ	0.95	2.55	3.453 (3)	159
$C5-H5\cdots S12^{iv}$	0.95	3.05	3.832 (3)	141
Summatry and a	(i) x 3 y	1 - 1 3.	(;;) x 5 y	3 - 1. (;;;)

2, -x + 3, -y + 1, -z + 2; (iv) -x, -y + 2, -z + 2.

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

This research was supported by Fundação para a Ciência e a Tecnologia (Portugal) through FEDER-funded project POCTI/CTM/41495/2001 (JF and JR), the PhD grant SFRH/ BD/29325/2006 (JF) and by the sabbatical research grant SFRH/BSAB/632/2006 (JR). JR and JF thank the University of Jyväskylä for supporting their visits, respectively, as a visiting professor and as a PhD student at the Nanoscience Center, Department of Chemistry. The Academy of Finland is gratefully acknowledged for a research grant (No. 122350, KR).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2187).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Garcia, M. H., Rodrigues, J. C., Dias, A. R., Piedade, M. F. M., Duarte, M. T., Robalo, M. P. & Lopes, N. (2001). J. Organomet. Chem. 632, 133-144.
- Hooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Lind, P., Lopes, C., Öberg, K. & Eliasson, B. (2004). Chem. Phys. Lett. 387, 238-242.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Ornelas, C., Gandum, C., Mesquita, J., Rodrigues, J., Garcia, M. H., Lopes, N., Robalo, M. P., Nättinen, K. & Rissanen, K. (2005). Inorg. Chim. Acta, 358, 2482-2488
- Ornelas, C., Ruiz, J., Rodrigues, J. & Astruc, D. (2008). Inorg. Chem. In the press, doi:10.1021/ic800100k.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

- Rodríguez, J. G., Lafuente, A., Rubio, L. & Esquivias, J. (2004). Tetrahedron Lett. 45, 7061–7064.
- Rodríguez, J. G., Lafuente, A., Rubio, L. & Rubio, L. (2006). *Tetrahedron*, **62**, 3112–3122.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tour, M. J. (2003). Molecular Electronics, Commercial Insights, Chemistry, Devices, Architecture and Programming. Singapore: World ScientificPublishing Co. Pte. Ltd. supplementary materials

Acta Cryst. (2008). E64, o765-o766 [doi:10.1107/S1600536808008106]

4,4'-[Thiophene-2,5-diylbis(ethyne-2,1-diyl)]dibenzonitrile

J. Figueira, V. Vertlib, J. Rodrigues, K. Nättinen and K. Rissanen

Comment

The preparation of highly conjugated molecules has been of great interest for their potential applications in fields such as nanoelectronics (Tour, 2003) or optoelectronics (Ornelas *et al.*, 2005, 2008; Lind *et al.*, 2004). Terminal cyano groups provide the ability to coordinate to transition metal centres such as RuCp (Cp = cyclopentadienyl; Garcia *et al.*, 2001; Ornelas *et al.*, 2005) which should result in an increase of the physical properties such as the first molecular hyperpolarizability β , which is reported to rise with the coordination to cyclopentadienylruthenium type centres (Ornelas *et al.*, 2005, 2008). As such the preparation of the π -conjugated title compound was intended for the preparation of dinuclear ruthenium complexes for nanoelectronic application.

In the solid state the title compound, $C_{22}H_{10}N_2S$, forms centrosymmetric dimers by pairs of non-classical C—H···S hydrogen bonds linking approximately coplanar molecules. The benzene ring involved in this interaction makes a dihedral angle of only 7.21 (16)° with the thiophene ring, while the other benzene ring is twisted somewhat out of plane with a dihedral angle of 39.58 (9)°. The hydrogen-bonded dimers stack on top of each other with an interplanar spacing of 3.44 Å. C—H···N hydrogen bonds link together stacks that run in approximately perpendicular directions. Each molecule thus interacts with twelve ajacent molecules, five of them approaching closer than the sum of van der Waals radii for the relevant atoms. Optimisation of the inter-stack contacts contributes to the non-planarity of the molecule.

Experimental

The title compound was prepared by Sonogashira cross-coupling (Rodríguez *et al.*, 2004, 2006) of 4-ethynylbenzonitrile (0.901 g, 7.09 mmol) and 2,5-dibromothiophene (0.800 g, 3.30 mmol) in dry tetrahydrofuran (16 ml) and *N*-ethyldiisopropylamine (25 ml). The reaction was catalysed by PdCl₂(PPh₃)₂ (0.250 g, 0.360 mmol) and CuI (0.068 g, 0.36 mmol). The mixture was left under N₂ atmosphere at room temperature for 17 h and then heated for 2. 5 h at 333–343 K. The resulting reaction mixture was washed with aqueous NH₄Cl and extracted (3 times) with CH₂Cl₂. The resulting solution was dried over Na₂SO₄ and evaporated to dryness. The resulting dark solid was column chromatographed (Silica S60, petroleum ether/CH₂Cl₂ 2:2.5), yielding a pale yellow solid. Slow evaporation of a CH₂Cl₂ solution of the title compound resulted in yellow crystals in 41% yield. ¹H NMR (500 MHz, CD₂Cl₂): δ 7.28 (2*H*, *s*, Ar); 7.62 (4*H*, *d*, Ar, J_{HH} = 9 Hz); 7.67 (4*H*, *d*, Ar, J_{HH} = 9 Hz); ¹³C NMR (126 MHz, CD₂Cl₂): δ 86.5, 93.4, 112.7, 118.9, 125.2, 127.8, 132.4, 132.8, 133.6, 133.7; IR (KBr): 2227 (*m*), 2207 (*m*), 1663 (*w*), 1600 (*s*), 1490 (*w*),1385 (*s*), 1110 (*w*), 865 (*s*), 839 (*s*), 802 (*m*), 555 (*m*), 536 (*w*) cm⁻¹; Mp: decomposes above 393 K.

Refinement

The H atoms were visible in electron density maps, but were placed in idealized positions and allowed to ride on their parent atoms at distances of 0.95 Å (aromatic and acetylinic), 0.98 Å (methyl) and 0.99 Å (methylene) with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

4,4'-[Thiophene-2,5-diylbis(ethyne-2,1-diyl)]dibenzonitrile

$F_{000} = 688$
$D_{\rm x} = 1.342 \ {\rm Mg \ m^{-3}}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 5465 reflections
$\theta = 1.0-25.0^{\circ}$
$\mu = 0.20 \text{ mm}^{-1}$
T = 173 (2) K
Block, colourless
$0.3\times0.2\times0.2~mm$

Data collection

Nonius KappaCCD diffractometer	$R_{\rm int} = 0.103$
ω and ϕ scans	$\theta_{\text{max}} = 25.0^{\circ}$
Absorption correction: none	$\theta_{\min} = 3.4^{\circ}$
19547 measured reflections	$h = -6 \rightarrow 6$
2906 independent reflections	$k = -23 \rightarrow 23$
1762 reflections with $I > 2\sigma(I)$	$l = -18 \rightarrow 18$

Refinement

Least-squares matrix: full	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0448P)^{2} + 0.1608P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$R[F^2 > 2\sigma(F^2)] = 0.048$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.107$	$\Delta \rho_{max} = 0.18 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.01	$\Delta \rho_{min} = -0.23 \text{ e} \text{ Å}^{-3}$
2906 reflections	Extinction correction: none
226 parameters	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C2	-1.0858 (5)	1.19052 (14)	0.88637 (18)	0.0381 (7)
C3	-0.9079 (4)	1.13708 (12)	0.87250 (18)	0.0321 (7)
C4	-0.7199 (4)	1.12636 (12)	0.93351 (18)	0.0350 (7)
H4	-0.7062	1.1548	0.9829	0.042*
C5	-0.5532 (4)	1.07398 (13)	0.92173 (17)	0.0338 (7)
Н5	-0.426	1.066	0.9636	0.041*
C6	-0.5711 (4)	1.03261 (12)	0.84841 (17)	0.0300 (6)
C7	-0.7592 (4)	1.04450 (12)	0.78771 (17)	0.0341 (7)
H7	-0.7716	1.0167	0.7376	0.041*
C8	-0.9275 (4)	1.09612 (13)	0.79951 (18)	0.0371 (7)
H8	-1.0561	1.1037	0.758	0.044*
C9	-0.3976 (4)	0.97811 (13)	0.83651 (16)	0.0328 (7)
C10	-0.2514 (4)	0.93344 (12)	0.82613 (17)	0.0318 (6)
C11	-0.0771 (4)	0.88054 (12)	0.81401 (17)	0.0302 (6)
C13	0.2619 (4)	0.79650 (12)	0.83234 (17)	0.0313 (6)
C14	0.1422 (4)	0.79222 (13)	0.75409 (17)	0.0395 (7)
H14	0.1851	0.7604	0.711	0.047*
C15	-0.0503 (5)	0.83959 (13)	0.74389 (18)	0.0388 (7)
H15	-0.1517	0.8428	0.6933	0.047*
C16	0.4557 (5)	0.75490 (13)	0.86692 (17)	0.0342 (7)
C17	0.6095 (4)	0.71891 (13)	0.89930 (17)	0.0329 (7)
C18	0.7787 (4)	0.67373 (12)	0.94359 (17)	0.0303 (6)
C19	0.9777 (4)	0.64472 (12)	0.90311 (17)	0.0332 (7)
H19	1.0049	0.6553	0.8447	0.04*
C20	1.1351 (4)	0.60097 (13)	0.94690 (17)	0.0339 (7)
H20	1.2717	0.5819	0.919	0.041*
C21	1.0941 (4)	0.58472 (12)	1.03170 (18)	0.0298 (6)
C22	0.8960 (4)	0.61295 (13)	1.07333 (18)	0.0346 (7)
H22	0.8682	0.6016	1.1315	0.041*

supplementary materials

C23	0.7403 (4)	0.65760 (12)	1.02936 (18)	0.0352 (7)
H23	0.606	0.6775	1.0577	0.042*
C24	1.2582 (5)	0.53837 (13)	1.07783 (17)	0.0330 (7)
N1	-1.2285 (4)	1.23260 (12)	0.89832 (16)	0.0495 (7)
N25	1.3868 (4)	0.50197 (11)	1.11512 (15)	0.0434 (6)
S12	0.13508 (11)	0.85961 (3)	0.89414 (5)	0.0369 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0375 (16)	0.0321 (17)	0.045 (2)	-0.0017 (13)	0.0037 (14)	0.0089 (14)
C3	0.0283 (14)	0.0245 (14)	0.0436 (19)	0.0030 (12)	0.0046 (13)	0.0035 (14)
C4	0.0353 (15)	0.0327 (16)	0.0373 (18)	0.0024 (12)	0.0045 (13)	-0.0046 (13)
C5	0.0295 (14)	0.0381 (16)	0.0332 (18)	-0.0002 (12)	-0.0059 (13)	-0.0021 (14)
C6	0.0286 (14)	0.0263 (15)	0.0352 (18)	-0.0019 (12)	0.0043 (12)	0.0030 (13)
C7	0.0371 (15)	0.0335 (16)	0.0315 (18)	0.0001 (13)	-0.0008 (13)	-0.0010 (13)
C8	0.0328 (15)	0.0383 (17)	0.040 (2)	0.0002 (13)	-0.0031 (13)	0.0054 (15)
C9	0.0314 (15)	0.0358 (16)	0.0313 (18)	-0.0013 (13)	0.0019 (12)	0.0007 (13)
C10	0.0332 (15)	0.0312 (16)	0.0310 (17)	-0.0008 (13)	0.0029 (12)	-0.0005 (13)
C11	0.0296 (14)	0.0265 (14)	0.0347 (18)	0.0017 (11)	0.0027 (12)	0.0045 (13)
C13	0.0303 (14)	0.0275 (15)	0.0363 (18)	0.0030 (12)	0.0043 (12)	0.0054 (13)
C14	0.0504 (17)	0.0369 (17)	0.0312 (19)	0.0158 (14)	0.0024 (14)	0.0009 (14)
C15	0.0492 (17)	0.0386 (17)	0.0285 (18)	0.0105 (14)	-0.0014 (13)	0.0016 (14)
C16	0.0343 (15)	0.0315 (16)	0.0369 (18)	-0.0015 (13)	0.0047 (13)	-0.0001 (14)
C17	0.0315 (15)	0.0305 (15)	0.0367 (18)	-0.0017 (13)	0.0018 (13)	-0.0007 (13)
C18	0.0304 (15)	0.0245 (14)	0.0360 (18)	-0.0026 (12)	-0.0010 (13)	-0.0010 (13)
C19	0.0339 (15)	0.0325 (16)	0.0333 (17)	-0.0018 (13)	0.0036 (13)	0.0032 (13)
C20	0.0301 (15)	0.0325 (16)	0.039 (2)	0.0028 (12)	0.0033 (13)	-0.0019 (14)
C21	0.0272 (14)	0.0254 (15)	0.0366 (19)	-0.0016 (11)	-0.0047 (12)	0.0008 (13)
C22	0.0340 (15)	0.0388 (16)	0.0308 (17)	0.0011 (13)	-0.0001 (13)	-0.0001 (13)
C23	0.0291 (14)	0.0361 (17)	0.0405 (19)	0.0032 (12)	0.0014 (13)	-0.0037 (14)
C24	0.0324 (15)	0.0314 (16)	0.0350 (18)	0.0016 (13)	-0.0026 (13)	-0.0064 (14)
N1	0.0471 (15)	0.0394 (15)	0.0626 (19)	0.0092 (12)	0.0082 (13)	0.0070 (13)
N25	0.0435 (14)	0.0459 (15)	0.0405 (16)	0.0087 (12)	-0.0057 (12)	-0.0037 (12)
S12	0.0353 (4)	0.0392 (4)	0.0360 (5)	0.0052 (3)	-0.0028 (3)	-0.0052 (3)

Geometric parameters (Å, °)

C2—N1	1.149 (3)	C13—S12	1.721 (3)
C2—C3	1.444 (4)	C14—C15	1.403 (3)
C3—C8	1.391 (4)	C14—H14	0.95
C3—C4	1.392 (4)	C15—H15	0.95
C4—C5	1.383 (3)	C16—C17	1.192 (3)
C4—H4	0.95	C17—C18	1.436 (3)
C5—C6	1.399 (3)	C18—C19	1.393 (3)
С5—Н5	0.95	C18—C23	1.396 (3)
C6—C7	1.392 (3)	C19—C20	1.375 (3)
С6—С9	1.438 (3)	C19—H19	0.95
С7—С8	1.378 (3)	C20—C21	1.385 (3)

С7—Н7	0.95	С20—Н20	0.95
C8—H8	0.95	C21—C22	1.392 (3)
C9—C10	1.195 (3)	C21—C24	1.446 (4)
C10—C11	1.418 (3)	C22—C23	1.382 (3)
C11—C15	1.365 (3)	C22—H22	0.95
C11—S12	1.724 (3)	С23—Н23	0.95
C13—C14	1.367 (3)	C24—N25	1.143 (3)
C13—C16	1.424 (4)		
N1—C2—C3	179.1 (3)	C13—C14—H14	123.4
C8—C3—C4	120.6 (2)	C15—C14—H14	123.4
C8—C3—C2	120.1 (2)	C11—C15—C14	113.1 (2)
C4—C3—C2	119.3 (2)	С11—С15—Н15	123.4
C5—C4—C3	119.5 (2)	С14—С15—Н15	123.4
C5—C4—H4	120.2	C17—C16—C13	176.4 (3)
C3—C4—H4	120.2	C16—C17—C18	174.9 (3)
C4—C5—C6	120.3 (2)	C19—C18—C23	119.1 (2)
C4—C5—H5	119.8	C19—C18—C17	121.9 (2)
С6—С5—Н5	119.8	C23-C18-C17	118.9 (2)
C7—C6—C5	119.3 (2)	C20-C19-C18	120.6 (2)
C7 - C6 - C9	120.6 (2)	C20-C19-H19	119 7
$C_{5} - C_{6} - C_{9}$	120.0(2) 120.1(2)	C18 - C19 - H19	119.7
C8—C7—C6	120.7(2)	C19 - C20 - C21	119.8 (2)
C8—C7—H7	1197	C19 - C20 - H20	120.1
С6—С7—Н7	119.7	$C_{21} - C_{20} - H_{20}$	120.1
C7-C8-C3	119.6 (2)	C_{20} C_{21} C_{22} C_{22}	120.1 120.5(2)
C7—C8—H8	120.2	$C_{20} = C_{21} = C_{24}$	120.3(2) 120.1(2)
C3—C8—H8	120.2	C_{22} C_{21} C_{24}	119.5 (2)
C10-C9-C6	179.1 (3)	C23—C22—C21	119.4 (3)
C9—C10—C11	179.8 (3)	C23—C22—H22	120.3
C15-C11-C10	128.4 (2)	C21—C22—H22	120.3
C15-C11-S12	110.82 (18)	C22—C23—C18	120.5 (2)
C10-C11-S12	120.8 (2)	C22—C23—H23	119.8
C14—C13—C16	129.1 (2)	C18—C23—H23	119.8
C14—C13—S12	110.75 (18)	N25—C24—C21	179.2 (3)
C16—C13—S12	120.1 (2)	C13—S12—C11	92.05 (12)
C13—C14—C15	113.3 (2)		
C8—C3—C4—C5	-0.8(4)	C23—C18—C19—C20	-0.2(4)
C2-C3-C4-C5	178.2 (2)	C17—C18—C19—C20	-179.2(2)
C3—C4—C5—C6	0.9 (4)	C18—C19—C20—C21	0.9 (4)
C4—C5—C6—C7	-0.4 (4)	C19—C20—C21—C22	-0.7 (4)
C4—C5—C6—C9	-179.9 (2)	C19—C20—C21—C24	179.6 (2)
C5—C6—C7—C8	-0.4 (4)	C20—C21—C22—C23	-0.2 (4)
C9—C6—C7—C8	179.2 (2)	C24—C21—C22—C23	179.6 (2)
C6—C7—C8—C3	0.5 (4)	C21—C22—C23—C18	0.8 (4)
C4—C3—C8—C7	0.0 (4)	C19—C18—C23—C22	-0.6 (4)
C2—C3—C8—C7	-178.9 (2)	C17—C18—C23—C22	178.4 (2)
C16—C13—C14—C15	176.4 (2)	C14—C13—S12—C11	-0.5 (2)
S12-C13-C14-C15	0.1 (3)	C16—C13—S12—C11	-177.2 (2)

supplementary materials

C10-C11-C15-C14	-179.9 (2)	C15—C11—S12—C13	0	0.8 (2)
S12-C11-C15-C14	-0.8 (3)	C10-C11-S12-C13	1	79.9 (2)
C13—C14—C15—C11	0.5 (3)			
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C15—H15…N1 ⁱ	0.95	2.65	3.246 (4)	121
C7—H7···N25 ⁱⁱ	0.95	2.65	3.384 (4)	134
C20—H20…N25 ⁱⁱⁱ	0.95	2.55	3.453 (3)	159
C5—H5…S12 ^{iv}	0.95	3.05	3.832 (3)	141
Symmetry codes: (i) - <i>x</i> -3/2, <i>y</i> -1/2, - <i>z</i> +	-3/2; (ii) $x-5/2$, $-y+3/2$, $z-1$	/2; (iii) - <i>x</i> +3, - <i>y</i> +1, - <i>z</i> +2;	(iv) -x, -y+2, -	z+2.

Fig. 1

